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Abstract 18 

Vegetation activity plays a crucial role in the global carbon cycle and climate. Many studies 19 

have examined recent changes in vegetation growth and the associated local climatic drivers. 20 

They revealed a global greening trend during the recent decades. However, few studies have 21 

analyzed how remote oceanic conditions affect land vegetation growth through atmospheric 22 

teleconnection, and the causes of the recent greening needs further investigation. In this study, 23 

we investigate the spatio-temporal variations (including trends) of vegetation activity using 24 

satellite data of growing-season normalized difference vegetation index (NDVIgs), and examine 25 

their relationship to local and remote climate oscillations and external anthropogenic forcing by 26 

statistical means. As expected, there is an increasing trend in global-mean NDVIgs from 27 

1982-2013, with significant greening over Europe and many other land areas. NDVIgs is 28 

temperature-limited at northern high-latitudes, but water-limited in arid and semi-arid regions, 29 

and radiation-limited in the Amazon and eastern and southern Asia. Globally, El Niño-Southern 30 

Oscillation (ENSO) is the leading climatic driver of interannual variability of NDVIgs, especially 31 

over southern and eastern Africa, eastern Australia, northeastern Asia, and northern South 32 

America. Consistent with previous modeling studies, a regression-based attribution analysis 33 

suggests that historical anthropogenic forcing (mainly increases in greenhouse gases) explains 34 

about two thirds of the NDVIgs trend from 1982-2013, with the rest coming mainly from the 35 

Atlantic Multi-decadal Oscillation (AMO). Contributions to the recent NDVIgs trend from 36 

ENSO and Pacific decadal variability and Artctic Oscillation appear to be small. 37 

  38 
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1. Introduction 39 

Vegetation is the main component of the terrestrial ecosystem and it plays a critical role in 40 

global carbon, water and energy cycles. Under global warming, how plant's photosynthesis 41 

responds to warmer temperature and other extreme events, such as frequent and prolonged 42 

droughts (Dai, 2011a, 2011b; Dai, 2013; Trenberth et al., 2014; Dai and Zhao, 2017), has 43 

become increasingly important for understanding the impact of climate change on terrestrial 44 

carbon fluxes and thus atmospheric CO2 concentrations.  45 

Many studies have showed that global vegetation activities have changed during the last 46 

several decades over various climate zones, vegetation types, and soil types. These changes 47 

include the greening in Europe (Zhou et al., 2001; Julien et al., 2006), the eastern U.S. (Xiao and 48 

Moody, 2005), China (Peng et al., 2011; Xu et al., 2014), India (De Jong et al., 2012), the Sahel 49 

(Anyamba and Tucker, 2005; Olsson et al., 2005), and western and southern Australia (Ukkola et 50 

al., 2015); and the browning over southern Africa (Ichii et al., 2002), southern South America 51 

(Xiao and Moody, 2005), northern North America (De Jong et al., 2013) and Southeast Asia 52 

(Zhang et al., 2016). These vegetation changes can affect the air-land carbon exchange. During 53 

the 1980s and 1990s, the global terrestrial ecosystems were a net carbon sink (Dai and Fung, 54 

1993; Schimel et al., 2001). From 2000 to 2009, however, vegetation productivity declined over 55 

large parts of the Southern Hemisphere (SH), which offset the greening in the Northern 56 

Hemisphere (NH) and resulted in a reduction in global productivity (Zhao and Running, 2010; 57 

Piao et al., 2011).  58 

Based mainly on statistical analyses, previous studies have also examined local climate 59 

drivers for vegetation change. The three leading climatic drivers are precipitation, temperature 60 
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and radiation, which act as the limiting factor for 52%, 31%, and 5% of global vegetated areas, 61 

respectively (Churkina and Running et al., 1998). Their effects vary across climate zones, 62 

ecosystem types, biomes and plant species. Temperature dominates vegetation growth in 63 

northern high-latitudes (Churkina and Running et al., 1998; Zhou et al., 2001; Nemani et al., 64 

2003; Xiao and Moody, 2005; Piao et al., 2014), while precipitation dominates in arid and 65 

semiarid areas (Kawabata et al., 2001; Nemani et al., 2003; Hickler et al., 2005; Fensholt et al., 66 

2012), with  radiation as the limiting factor only in tropical rainforests (Nemani et al., 2003; 67 

Schuur 2003). Drought, manifested as both water deficit and high temperatures, was found to 68 

limit vegetation growth in the Amazon (Phillips et al., 2009; Doughty et al., 2015), North 69 

America (Ji and Peters, 2003; Quiring and Ganesh, 2010), Europe (Ciais et al., 2005; Pasho et 70 

al., 2011), Congo rainforests (Zhou et al., 2014), and other regions (Vicente-Serrano et al., 71 

2013). 72 

Most previous studies have focused on the relationship between vegetation and local 73 

climatic factors. Few studies have examined the teleconnection of local vegetation growth to 74 

remote oceanic conditions. However, many studies have shown that natural climate oscillations, 75 

such as the El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) or the 76 

Inter-decadal Pacific Oscillation (IPO), the Arctic Oscillation (AO), and the Atlantic 77 

Multi-decadal Oscillation (AMO) (Liu, 2012) can have large impacts on temperature and 78 

precipitation over many remote land areas (e.g., Ropelewski and Halpert, 1989; Thompson and 79 

Wallace, 1998; Dai and Wigley, 2000; Buermann et al., 2003; Dai, 2013; Gu and Adler, 2013, 80 

2015; Dong and Dai, 2015). Thus, natural climate variations originated from the oceans could 81 

contribute to recent variations and changes in terrestrial vegetation activity through their 82 
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influences on climate fields. Philippon et al. (2014) have highlighted the impact of ENSO on 83 

vegetation dynamics in Africa through its influences on rainfall, solar radiation, and temperature. 84 

El Niño events were found to be associated with the negative NDVI anomaly in central India 85 

(Bothale and Katpatal, 2014) and northeastern Brazil (Erasmi et al., 2014). Previous studies also 86 

found that ENSO and AO were the principal drivers of interannual variability in NH greenness 87 

during 1982-1998 (Buermann et al., 2003), while PDO and AMO could explain about half of 88 

NH NDVI variations during 2000-2015 (Bastos et al., 2017). In general, warm ENSO and 89 

PDO/IPO events are associated with decreased greenness in Australia, Southeast Asia, 90 

northeastern South America and southern Africa, but increased greenness in eastern Africa, 91 

central Asia, and northern North America (Woodward et al., 2008; Miralles et al., 2014).  92 

A few studies have focused on attribution of recent greening trends through model 93 

simulations. Although limited by modeling uncertainties, these studies suggest that CO2 94 

fertilization is the dominant contributor to the recent global trend in NDVI (Los, 2013) and leaf 95 

area index (LAI) (Mao et al., 2013; Zhu et al., 2016), followed by climate change, nitrogen 96 

deposition and other factors (Zhu et al., 2016). Mao et al. (2016) have gone a further step to 97 

attribute the greening of the northern extratropical land surface to anthropogenic forcing, 98 

primarily human-produced greenhouse gases (GHGs). 99 

This study aims to investigate the variations and changes of global vegetation activity from 100 

1982-2013 using the NDVI dataset from the Global Inventory Monitoring and Modeling 101 

Systems (GIMMS) (Tucker et al., 2005), and examine the relationship between NDVI and local 102 

climate factors and remote climatic oscillations. Another focus is on the attribution of the recent 103 

global NDVI trends and variations to external anthropogenic forcings (such as increases in 104 
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GHGs) and internal modes of climate variability (such as ENSO, AO and AMO). This study 105 

differs from the previous studies by making an extra step to explain the variations and changes 106 

in global vegetation growth in terms of internal climate modes of variability (mainly of oceanic 107 

origin) as well as external climate forcing. The results should improve our understanding of the 108 

underlying drivers of recent changes in global terrestrial vegetation activity based on 109 

observational analyses, in contrast to previous modeling studies. 110 

 111 

2. Data and methods  112 

2.1. NDVI data 113 

To quantify vegetation activity, we used the latest GIMMS3g NDVI dataset 114 

(http://ecocast.arc.nasa.gov/) derived from the Advanced Very High-resolution Radiometer 115 

(AVHRR) on satellites operated by the National Oceanographic and Atmospheric Administration 116 

(NOAA) (Tucker et al., 2005). It spans from January 1982 through December 2013 on a 1/12 117 

degree grid and is available twice a month. This study focuses on the vegetation activity in the 118 

growing season, which is defined here as April-October for 20°N-70°N, October-April for 119 

20°S-60°S, and January-December (i.e., the whole year) for 20°S-20°N. We first calculated the 120 

time series of NDVI for growing season (NDVIgs) over each 1/12 degree pixel with NDVI > 0 121 

during the growing seasons. To match with climate data, the raw NDVIgs data were simply 122 

averaged onto a 2.5°2.5° grid. Additionally, areas with very sparse vegetation cover (long-term 123 

mean NDVIgs < 0.1) were masked out as well as the Arctic regions (north of 70°N). Time series 124 

of the global (60
o
S-70

o
N) mean NDVIgs from 1982-2013 were obtained by averaging over all 125 

the pixels with NDVIgs  0.1 using area as the weighting. 126 
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2.2. Climate data 127 

Observational data for monthly surface air temperature (T) over land were obtained from 128 

the Climate Research Unit (CRU) at the University of East Anglia (TS3.22; Harris et al., 2014). 129 

The CRU TS 3.22 dataset covers 1901-2014 on a 0.5° grid and was derived by interpolating T 130 

anomalies from ~4000 weather stations (Mitchell and Jones, 2005). The CRU monthly 131 

temperature data were simply averaged onto the 2.5° grid. 132 

Monthly precipitation (P) data were obtained from Global Precipitation Climatology Centre 133 

(GPCC) v7 dataset, which covers 1901-2010 (Schneider et al., 2014). The Global Precipitation 134 

Climatology Project (GPCP) v2.2 (Huffman et al., 2009) data for 2011-2013 were used to extend 135 

the P series to 2013. Before merging, the two datasets were adjusted to have the same mean over 136 

a common period (1981-2010) at each grid box on a 2.5
o
 grid. 137 

Monthly data of sea surface temperatures (SSTs) were obtained from the Hadley Centre Sea 138 

Ice and Sea Surface Temperature dataset (HadISST) (Rayner et al., 2003), which was derived 139 

from in-situ observations and covers our study period (1982-2013) with a spatial resolution of 140 

1°1°. 141 

Monthly data for photosynthetically active radiation (PAR) were from the NASA/Global 142 

Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB3.0) dataset, 143 

which were obtained from the NASA Langley Research Center Atmospheric Science Data 144 

Center (https://eosweb.larc.nasa.gov). The PAR data were generated using an updated version of 145 

the University of Maryland’s shortwave and longwave flux algorithm and the International 146 

Satellite Cloud Climatology Project (ISCCP) DX radiance and cloud parameters (Rossow and 147 

Schiffer, 1999). The PAR dataset only covers 1984-2007 on a 1°×1° grid, which was first 148 
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assigned onto a 0.5
o
 grid and then averaged onto the 2.5° grid. 149 

We used the monthly self-calibrated Palmer Drought Severity Index with Penman-Monteith 150 

potential evapotranspiration (sc_PDSI_pm) produced by Dai et al. (Dai et al., 2004; Dai, 2011a, 151 

2011b, 2013; Dai and Zhao 2017) as a measure of surface aridity. The sc_PDSI_pm was 152 

calculated using historical meteorological data on the 2.5° grid for 1850-present and is available 153 

from http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html.  154 

We used indices for ENSO and IPO (ENSO&IPO thereafter, Dong and Dai 2015), AMO 155 

(Liu, 2012), and AO (Thompson and Wallace, 1998) to represent the leading modes of climate 156 

variability originated from the tropical Pacific Ocean, the North Atlantic Ocean, and the northern 157 

mid-high latitude atmosphere, respectively. We chose these climate modes because they are the 158 

most studied, well-known oscillations that have significant impacts on global climate. ENSO is 159 

the dominant mode of interannual (2-7 year) variations in sea surface temperatures (SSTs) and 160 

winds over the tropical Pacific Ocean, which can influence weather and climate in many regions 161 

of the world through atmospheric teleconnections (Ropelewski and Halpert, 1989; Dai and 162 

Wigley, 2000). The PDO and IPO refer to the decadal to multi-decadal variations in Pacific SSTs. 163 

Both of them have essentially the same SST anomaly patterns that are ENSO-like (Zhang et al., 164 

1997), with PDO focusing more on the North Pacific domain while IPO covering the whole 165 

Pacific (Dong and Dai 2015). The AMO is a climate mode of 60-80 years oscilation seen in 166 

North Atlantic SSTs. The AO is the dominant pattern of winter sea-level pressure fields over 167 

north of 20°N with no prefered frequency. In particular, the ENSO index based on equatorial 168 

Pacific SSTs contains the variations related to both ENSO and IPO (or PDO), thus we refer it as 169 

the ENSO&IPO variability. More details about these climate modes can be found in the cited 170 



 

9 

 

references.     171 

We used the SST anomalies averaged over the Niño3.4 region (120°W-170°W and 5°S-5°N) 172 

as the ENSO&IPO index, which contains both the interannual ENSO and the decadal to 173 

multidecadal IPO variations. The monthly AO index was acquired from the Climate Prediction 174 

Center (CPC) of NOAA 175 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/history/method.shtml), 176 

which was constructed by projecting the monthly 1000-hPa height anomalies onto the leading 177 

empirical orthogonal function (EOF) of the 1000-hPa height fields over north of 20
o
N. The AO 178 

index was normalized by the standard deviation of the base period from 1979-2000. The AMO 179 

index (unsmoothed and undetrended) used in this study was defined as the North Atlantic 180 

monthly SST anomaly averages over 0°-70°N based on the HadISST dataset (Rayner et al., 181 

2003). The global-warming component in all these indices was removed using regression against 182 

the time series of historical external anthropogenic forcing as described below.  183 

2.3. Analysis Methods 184 

We applied an EOF analysis to the NDVIgs on the 2.5
o
 grid excluding areas with a mean 185 

NDVIgs<0.1 and north of 70°N to reveal the leading modes of NDVIgs variability and its 186 

possible relation with external forcing during 1982-2013. An EOF analysis of a time series of 187 

2-dimentional fields expresses the data in terms of orthogonal base functions (or spatial patterns), 188 

which are determined by the data, and the leading modes often reveal the dominant temporal and 189 

spatial patterns in the data. It is similar to performing a principal component analysis, except that 190 

the EOF method is often applied to a time series of 2-dimensional fields of the same variable 191 

(i.e., taking the time series at each location as a separate variable), instead of the time series of 192 
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possibly correlated variables. 193 

To quantify the influences from individual climate drivers, we examined the correlations 194 

between NDVIgs and local growing-season T, P, sc_PDSI_pm or PAR. The correlation between 195 

NDVIgs and annual ENSO&IPO, AMO, and AO indices were also computed to indicate how 196 

remote climate oscillations were related to vegetation growth. Additionally, a maximum 197 

covariance analysis (MCA, Bretherton et al., 1992) of the NDVIgs and annual SST fields was 198 

conducted to investigate the possible teleconnection between terrestrial vegetation activity and 199 

oceanic surface conditions. The MCA is similar to EOF decomposition except for extracting the 200 

leading modes of the co-variance between two 2-dimentional fields, such as the NDVIgs and 201 

SST fields. All these analyses were done with the linear trends removed in order to focus on the 202 

relationship of year-to-year variations. 203 

Over the relatively short period from 1982-2013, apparent linear trends in both NDVIgs and 204 

the climate drivers can result from either internal decadal-multidecadal variations associated 205 

with the ENSO&IPO, AMO, and AO, or external climate forcing such as volcanic eruptions and 206 

changes in solar irradiance (external natural forcing), or increases in GHGs and manmade 207 

aerosols (external anthropogenic forcing) (see Fig. 8.18 of Myhre et al., 2013). To quantify the 208 

contributions from the internal climate variations and externally-forced climate changes to the 209 

NDVIgs trends during 1982-2013, we performed a multiple regression analysis as outlined below. 210 

Similar regression methods have been used previously (e.g., Dai et al., 2015; Dong and Dai, 211 

2017) and were found to be effective in separating the forced response from internal climate 212 

variations. We emphasize that the atmosphere and Earth's surface have a fairly fast response 213 

time (in the order of days) to external forcing (such as volcanic eruptions or GHG changes). 214 
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Thus for annual-mean response over a large region, the linear regression method without time 215 

lags should work reasonably well. Also, because there exists little trend in the external natural 216 

forcing during our analysis period from 1982-2013, we only use the external anthropogenic 217 

forcing in the trend attribution as described below. 218 

First, we regressed annual time series of ENSO&IPO, AMO, and AO indices onto the 219 

external anthropogenic radiative forcing (including GHG and manmade aerosol forcing) over the 220 

longer period from 1900-2013 (see Fig. S1 in the Supplementary Information or SI). We then 221 

subtracted the regressed part from the raw ENSO&IPO, AMO, and AO indices to remove the 222 

externally-forced component. Using AMO as an example, we have  223 

              ,                          (1) 224 

                    ,                     (2) 225 

Where AMOex is the regressed part of the AMO index that is associated with the nonlinear 226 

external anthropogenic forcing (see Fig. S1), a and b are the regression coefficients using data 227 

from 1900-2013, AMOraw is the raw AMO index, and AMOnew is the resdiual (referred to as the 228 

detrended AMO index) without the externally-forced component. We attributed the remaining 229 

trends in AMOnew to internal climate variations. ENSO&IPOnew and AOnew were derived by the 230 

same procedure as AMOnew.  231 

The use of a longer period from 1900-2013 in estimating the regression coefficients a and b 232 

is to minimize the aliasing of the forced signal with other internal variations as their correlations 233 

are much weaker over 1900-2013 than over shorter periods such as 1982-2013. Here, we 234 

implicitly assumed that internal climate variations would not produce a long-term component 235 

that resembled the external forcing series with mnotonical increases shown in Fig. S1 over 236 
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1900-2013.This assumption is less likely to be valid for shorter periods such as 1982-2013 since 237 

multi-decadal oscillations from AMO or IPO can produce changes that are correlated with the 238 

forcing series over such short periods.  239 

 After removing the component associated with the external anthropogenic forcing, we 240 

linearly detrended the ENSO&IPOnew, AMOnew and AOnew indices at each 2.5
o
 grid box to 241 

remove the trends from the multiple regression with NDVIgs. The detrended values are denoted 242 

as NDVIgs_d, ENSO&IPOnew_d, AMOnew_d, and AOnew_d. In addition, there exists a weak 243 

correlation between AMOnew_d and AOnew_d (r=-0.35) over 1982-2013, and no correlation 244 

between ENSO&IPOnew_d and AMOnew_d (r=0.01) or AOnew_d (r=-0.04). We assumed that the 245 

AMO (an oceanic mode with long memories) is the driving force for this covariance between 246 

AMOnew_d and AOnew_d (an atmospheric mode with short memories). Thus, before performing 247 

the following regression, the AMO-correlated part was removed from AOnew_d (denoted as 248 

AOnew_d'). This correlated part was also removed from undetrended AOnew using the same 249 

regression of AOnew_d on AMOnew_d, denoted as AOnew'. The multiple regression over 1982-2013 250 

has the form: 251 

                                                      ' .       (3) 252 

Note that the three independent variables in eq. (3) were uncorrelated and the regression 253 

coefficients (b0, b1, b2 and b3) in eq. (3) were derived from interannual to decadal variations 254 

during 1982-2013. A key assumption in this study is that the regression coefficients of eq. (3) are 255 

also valid for the relationship among long-term changes (i.e., trends) in these variables during 256 

1982-2013. This is reasonable since similar physical processes are behind natural climate 257 

variations and long-term (decadal-centennial) climate changes (Dai, 2016). Under this 258 
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assumption, we used the regression coefficients in eq. (3) and the un-detrended ENSO&IPOnew, 259 

AMOnew and AOnew' indices, which contain a linear trend of -0.22, 0.70 and 0.04 per decade 260 

during 1982-2013, respectively, to estimate the part of the NDVIgs (referred to as NDVIgs_IN) 261 

that is attributable to the internal climate changes. The inferred part of the NDVIgs (NDVIgs_EX) 262 

that is attributable to all external forcing (such as GHG increases and land use changes, Zhu et al. 263 

2016) is obtained by subtracting NDVIgs_IN from the raw NDVIgs. Thus, we have 264 

                                                  ,         (4) 265 

                          .                        (5) 266 

The linear trends in NDVIgs_IN and NDVIgs_EX represent the trend parts attributable to 267 

internal climate variations and external forcing, respectively. NDVIgs_EX includes the effects on 268 

vegetation from anthropogenic climate change, CO2 fertilization, and all other mechanisms. We 269 

did not attempt to quantify these individual effects here, but our NDVIgs_EX still provides an 270 

independent estimate of the externally-forced total NDVIgs change for comparison with 271 

model-based estimates (e.g., Los, 2013; Mao et al., 2013, 2016; Zhu et al., 2016). Furthermore, 272 

since the trend in the external natural forcing during 1982-2013 is very small, NDVIgs_EX is 273 

primarily due to the external anthropogenic forcing. Due to the relatively short length of the 274 

NDVI record, we did not split it into sub-periods to investigate the effect of the possible change 275 

in the vegetation-climate relationship as done by Piao et al. (2014). 276 

3. Results 277 

3.1. Changes and variations in NDVIgs from 1982-2013 278 
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 279 

Fig. 1. Maps of (a) the 1982-2013 mean growing-season NDVI (NDVIgs). The growing season is 280 

defined here as April-October for 20°N-70°N, October-April for 20°S-60°S, and from 281 

January-December for 20°S-20°N. Areas with long-term mean NDVIgs<0.1 are in blank, (b) 282 

coefficient of variation (CV) of NDVIgs, defined as the ratio (in %) of the standard deviation to 283 

the mean, and (c) linear trends (in change per year) of NDVIgs from 1982 to 2013. Trends 284 

significant at the 0.10 level are marked with dots. Also shown (d) is global-mean NDVIgs 285 

anomalies (solid line) and its linear trend (dashed line, 0.00474 per decade) from 1982-2013 286 

averaged over all grid cells with long-term mean NDVIgs>0.1. 287 

 288 

The 1982-2013 mean NDVIgs is shown in Fig. 1a. Areas with a mean NDVIgs < 0.1 are 289 

masked as blank. Large NDVIgs values (0.5-0.8) with dense vegetation cover are found over 290 

East and Northwest North America, most South America, central Africa, most Europe, and 291 

North, East and Southeast Asia. In contrast, Southwest North America, southern South America, 292 

southern and northern Africa, central and western Asia, and most Australia have low NDVIgs 293 

values (<0.4) with poor vegatation cover. The interannual variations of NDVIgs are depicted by 294 

the coefficient of variation (CV, i.e., the ratio of the standard deviation to the mean) in Fig. 1b. 295 

The CV shows relatively large variations of NDVIgs over central-eastern Australia, central Asia, 296 

parts of northern China, southern and eastern Africa, northeastern Brazil, southern South 297 
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America, and central North America. 298 

The linar trends in NDVIgs from 1982-2013 are showed in Fig. 1c. Globally, ~48% of the 299 

grid cells show significant (with the attained signficance p<0.1) increasing trends, including 300 

Europe, most Asia except its Southwest, eastern and parts of central North America, most South 301 

America, southern India, southern Sahel, southern Africa and parts of Australia. Only about 8% 302 

of the cells show significant (p<0.1) decreasing trends, mainly over Northwest and Southwest 303 

North America, southern South America, and central and eastern Africa (Fig. 1c). Averaged over 304 

all grid cells with mean NDVIgs > 0.1, the global-mean NDVIgs (Fig. 1d) shows a significant 305 

(p<0.01) upward trend of 0.00474 or 1.2% of the mean per decade during 1982-2013. The 306 

increasing rate is more notable before 1997 (trend = 0.01145 or 2.8% per decade, p<0.01) than 307 

thereafter (trend = 0.00334 or 0.8% per decade, p=0.20).  308 

An EOF analysis was conducted to decompose the NDVIgs variations into various 309 

orthogonal modes, which may help identify the leading temporal and spatial patterns in the 310 

NDVI dataset. The two leading EOFs and the associated principal components (PCs) of the 311 

NDVIgs are shown in Fig. S2. The first EOF, which explains 28.3% of the total variance, shows 312 

spatial patterns broadly comparble to the trend map (Fig. 1c) and its PC is highly correlated with 313 

the global-mean NDVIgs (Fig. 1d, r=0.97, p<0.01). Thus the EOF1 captures a large portion of the 314 

NDVIgs trend. The PC1 shows a significant upward trend for all areas with positive values in Fig. 315 

S2a and it is highly correlated (r=0.79, p<0.01) with the total external radiative forcing 316 

(including volcanic, solar and anthoropogenic frocing, red line in Fig. S2b, from Myhre et al., 317 

2013). The declines of PC1 around 1984 and 1993 correspond to the El Chichon (in April 1982) 318 

and Mt. Pinatubo (in June 1991) volcanic eruptions, although PC2 (Fig. S2d) also contains these 319 
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volcanic signals. That is, the EOF method is unable to completely separate the volcanic signal 320 

from other modes of variability given the relatively short record for 1982-2013. Nevertheless, 321 

Fig. S2 shows that the two volcanic eruptions have caused a temporal decline in vegetation 322 

growth over a few years following the eruptions, which is consistent with previous reports 323 

(Lucht et al., 2002; Soden et al., 2002). Such an effect on vegetation growth is expected given 324 

the impacts of the volcanic eruptions on surface air temperature, precipitatin, evapotranspiration 325 

(ET) (Dong and Dai, 2017), and the decline in the growth-rate of atmospheric CO2 (Bousquet et 326 

al., 2000). Although vegetation activity declined following Pinatubo eruption, the global carbon 327 

sink was enhanced which was possible due to an enhanced oceanic sink, a retarded heterotrophic 328 

respiration driven by cooling and drying of the soil, and reduced biomass buring (Angert et al., 329 

2004).  330 

The PC2 (Fig. S2d, 9.8% of the variance) shows a slight upward (downward) trend for the 331 

areas with positive (negative) values in Fig. S2c, of which spatial patterns are similar to the 332 

precipitation and ET change patterns induced by anthropogenic forcing (see Fig.7 of Dong and 333 

Dai, 2017). This indicates that external forcing may have partly contributed to the trends in 334 

NDVIgs. The 3
rd

 and 4
th

 EOFs (Fig. S3) explain 7.1% and 6.5% of the variance, respectively, and 335 

they seem not reflecting any known physical modes.  336 

3.2.The relations between NDVIgs and local and remote climatic conditions 337 
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 338 

Fig. 2. Maps of correlation coefficients between detrended NDVIgs and detrended (a) surface air 339 

temperature (T), (b) precipitation (P), (c) sc_PDSI_pm, and (d) photosynthetically active 340 

radiation (PAR) in the growing season during 1982-2013 (1984-2007 for PAR). Correlations 341 

significant at the 0.10 level are marked with dots.  342 

 343 

Figure 2 shows the correlation coefficients between detrended NDVIgs and T, P, PDSI or 344 

PAR during 1982-2013 (1984-2007 for PAR). The correlations measure the coupling strength of 345 



 

18 

 

the interannual-decadal variations between NDVI and local climate factors. As expected, 346 

significant positive correlations between NDVIgs and T are found at northern high latitudes (Fig. 347 

2a), indicating that vegetation growth over these areas is temperature-controlled. NDVIgs is 348 

negatively correlated with T over the western U.S., southern South America, the Sahel, southern 349 

Africa, central Asia, and Australia. These arid and semi-arid regions also show significant 350 

positive correlations between NDVIgs and P and between NDVIgs and sc_PDSI_pm (Fig. 2b-c). 351 

This confirms the notion that water is the limiting factor for vegetation growth in arid and 352 

semi-arid regions (Nemani et al., 2003), where T arises as the surface dries up, leading to 353 

negative NDVIgs-T correlations. Figure 2d shows significant positive correlations between 354 

NDVIgs and PAR over the Amazon, Southeast Asia and many parts of the middle-latitude NH. 355 

This suggests that radiation is also a limiting factor for vegetation growth in those areas. 356 
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 357 

Fig. 3. (a-c) Same as Fig.2 but for the correlation between detrended NDVIgs and detrended 358 

annual (a) ENSO&IPO, (b) AO, and (c) AMO index during 1982-2013. (d) Normalized time 359 

series of the detrended global-mean NDVIgs (black) and the detrended three oscillation indices. 360 

The correlation coefficient between the NDVIgs curve and the index line in (d) is -0.08 for 361 

Nino3.4, -0.03 for AO, and 0.29 for AMO. 362 

 363 
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Figure 3a-c show the correlation maps between detrended NDVIgs and detrended 364 

ENSO&IPO, AMO or AO index. It indicates the coupling strength of the interannual-decadal 365 

variations between NDVI and remote climate oscillations. NDVIgs is negatively correlated with 366 

the ENSO&IPO index over eastern Australia, southern Africa, northeastern South America, and 367 

parts of southern and northeastern Asia, suggesting that vegetation growth is suppressed over 368 

these regions during El Niño years and IPO warm phases. In contrast, significant positive 369 

correlations are seen over southwestern Asia and many parts of North America (Fig.3a). Positive 370 

(negative) correlations between NDVIgs and the AO index are seen over most Eurasia (North 371 

America) (Fig.3b), indicating that vegetation growth is enhanced (suppressed) over Eurasia 372 

(North America) during years with a positive AO phase. Correlations between NDVIgs and the 373 

AMO index are mostly postive, especially over northern North America, high-latitude Eurasia, 374 

central and eastern Africa, southern India, and most South America (Fig.3c). This suggests that 375 

vegetation growth is enhanced over most land areas during postive AMO phases. Globally, 376 

NDVIgs is positively correlated with the AMO index (r=0.29), while the correlations with the 377 

ENSO&IPO (r=-0.08) and AO (r=-0.03) indices are weak (Fig.3d).  378 
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 379 

Fig. 4. (a) Spatial patterns and (b) the associated temporal coefficients or PCs (on the right axis 380 

for PC1_SST) of the first maximum covariance analysis (MCA) mode for the NDVIgs (land 381 

areas) and annual sea surface temperatures (SSTs, ocean areas). The dashed red line in (b) is the 382 

detrended Niño3.4 index (on the left axis). The correlations among the lines in (b) are shown 383 

below the panel. To indicate the interannual co-variability, both the NDVIgs and SST data were 384 

detrended before the MCA analysis.  385 

 386 

To further investigate how internal climate modes of variability affect vegetation growth on 387 

interannual to decadal time scales through teleconnection, we conducted an MCA analysis of 388 

detrended NDVIgs and SST. Figure 4 shows the temporal and spatial patterns of the first MCA 389 

mode (MCA1), which explains 32.5% of the covariance and 10.6% and 24.7% of the 390 

spatio-temporal variance in the NDVIgs and SST fields, respectively. The PC1 for SST is highly 391 

correlated (r=0.93) with the detrended Niño3.4 index while its spatial pattern resembles that of 392 
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ENSO&IPO (Fig. 4). Thus, this leading MCA mode is associated with ENSO&IPO. Figure 4 393 

shows that during warm El Niño (cold La Niña) events, vegetation growth is suppressed 394 

(enhanced) over tropical South America, most Africa, Australia, midlatitude and South Asia, 395 

most Europe, northern Canada and Alaska, but it is enhanced (suppressed) over western Asia, 396 

central eastern China, parts of eastern Africa, the central continguous U.S., and Pacific coasts of 397 

Canada and Alaska. While many of these NDVIgs anomaly patterns are consistent with the 398 

ENSO-induced precipitation anomalies (e.g., Dai and Wigley 2000), the areas with negative 399 

NDVIgs anomaleis are more widespread than those with negative precipitation anomalies, 400 

possibly reflecting the additioanl influence of the Niño3.4 SST anomalies on land temperatures 401 

(Dong and Dai 2015) and other fields (e.g., cloudiness and thus PAR). These results show that 402 

ENSO is the leading internal climate oscillation that can signficantly affect global vegetation 403 

growth on interannual to multi-year time scales, confirming findings of many previous studies 404 

(e.g., Nicholls, 1991; Mennis, 2001; Nemani et al, 2003; Woodward et al., 2008; Bothale and 405 

Katpatal, 2014; Philippon et al., 2014; Erasmi et al., 2014; Miralles et al., 2014). 406 

MCA2 (MCA3) explains 21.6% (10.0%) of the covariance, and 13.9% (4.5%) and 11.8 407 

(13.2)% of the spatio-temporal variance in the NDVIgs and SST fields, respectively (Figs. 408 

S4-S5). The PC2 for SST is also correlated (r=-0.73) with the detrended Niño3.4 index. This 409 

indicates that the MCA2 mode is partly negatively associated with ENSO&IPO, and the NDVIgs 410 

responses are mostly negative (Fig. S4). The MCA3 (Fig. S5) reflects mostly the signal for 1983, 411 

1987 and 1998, with large positive SST anomalies in the tropical eastern Pacific in those years 412 

and some negative SST anamolies over the northeastern North Pacific and tropical central 413 

Pacific. The NDVIgs response is mostly positive (Fig. S5). Both these MCA modes appear to 414 
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still reflect some aspects of the ENSO&IPO variability. 415 

3.3.Contribution of internal climate variations and external forcing to NDVIgs trends  416 

To help understand the causes of the recent NDVIgs changes, here we present results from 417 

an attribution analysis (see section 2.3) over the globe. The total variance (in %) of the 418 

detrended NDVIgs explained by the three internal climate modes is shown in Fig.S6 in SI. 419 

Together, these modes explain 15-30% of NDVIgs's variance over most Canada, parts of the 420 

central U.S., northern Europe, western Asia, India, eastern Australia, eastern Africa, parts of 421 

South and West Africa, and parts of South America. The extra percentage variance explained by 422 

the individual climate modes in addition to that explained by the other two modes are shown in 423 

Fig. S7. Fig. S6b shows the leading mode that explains the largest NDVIgs variance at each grid. 424 

ENSO&IPO has the largest influence on NDVIgs over northeastern Brazil, parts of the Amazon, 425 

southern Africa, eastern Australia, southwestern, southern and eastern Asia. AO shows the 426 

largest effect over low-latitude North America and northern Eurasia, while AMO has the largest 427 

impact over mid-high latitude North America, central and eastern Africa, northern South 428 

America, and parts of Eurasia (Fig. S6b). 429 
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 430 

Fig. 5. Maps of NDVIgs trends during 1982-2013 (in units of change per decade) reconstructed 431 

using (a) internal climate modes (ENSO&IPO, AMO and AO), (b) inferred NDVIgs trends due to 432 

external anthropogenic forcing. (c) Global-mean time series of NDVIgs_IN (right axis), 433 

NDVIgs_EX (left axis), and NDVIgs (left axis) with correlation coefficients among them shown. 434 

Areas with the regression using eq. (3) being significant at the 0.10 level are marked with dots in 435 

(a) and (b). 436 

 437 

Our trend attribution analysis (based on eqs. 4-5) shows that the external forcing is the 438 

main contributor to the NDVIgs trend from 1982-2013, while the contribution from the three 439 
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internal climate modes is relatively small (Fig.5a-b). The internal modes induce some weak 440 

greening trends over Canada and Alaska, East and central Africa, and southern South America 441 

that offset some of the decreasing trends induced by the external forcing over these regions 442 

(Fig.5a-b). In contrast, the internal modes enhance the greening trends induced by the external 443 

forcing over central and southern India, Europe, West Africa and northern South America (Fig. 444 

5a-b). The internal modes also induce large NDVIgs decreases over central Asia (Fig. 5a). 445 

Globally averaged (Fig.5c), the external foricng (mainly anthropogenic forcing) explains about 446 

two thirds (~66%) of the NDVIgs trend, with the remaining (~34%) explained by the three 447 

internal modes.  448 
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 449 

Fig. 6. Maps of the NDVIgs trends from 1982-2013 (in units of change per decade) reconstructed 450 

individually using indices for (a) AMOnew, (b) ENSO&IPOnew, and (c) AOnew. Dots indicate the 451 

regression coefficient is significant at the 0.10 level in eq. (3). As these maps were calculated 452 

based on the regression coefficients (b1, b2, b3) of Eq. (3), the significance level of the mapped 453 

data depends on that of regression coefficients (though in part depends on significance of trends 454 

in climate indices). 455 

 456 

Figure 6 shows the maps of the NDVIgs trends reconstructed using the three individual 457 

climatic modes. The AMO, which has a relatively large trend after removing the component 458 
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associated with historical external anthropogenic forcing (Table S1 in SI), contributes the most 459 

to the NDVIgs trends over high-latitude North America and Eurasia, South America, most Africa, 460 

Australia, and India. The spatial pattern of the AMO contribution (Fig.6a) is generally consistent 461 

with previous studies which have shown that warm phase of AMO would lead to reduced 462 

precipitation and high temperatures over North America (Enfield et al., 2001; Schubert et al., 463 

2009), warming over most East Asia (Wang et al., 2009), increased precipitation over India (Li 464 

et al., 2008) and West Africa (Zhang et al., 2006), reduced rainfall over Northeast Brazil (Knight 465 

et al., 2006) and increased summer rainfall and temperature over West Europe (Sutton and 466 

Hodson, 2005). These variations in precipitation and temperature would lead to corresponding 467 

changes in NDVIgs based on the correlatins shown in Fig. 3a-b. 468 

The contributions from the ENSO&IPO to NDVIgs trends are small (Fig.6b), with some 469 

negative trends over parts of central Asia, western Canada, and central China, and positive 470 

trends over Northeast Brazil, southern Africa, eastern Australia, southern Asia, and Northwest 471 

Pacific. The attribution of AO to NDVIgs trends is negligible (Fig.6c). The small trend 472 

contributions from ENSO&IPO and AO are possibly due to the small trends in these indices 473 

after removing the component associated with the long-term external anthropogenic forcing and 474 

that associated with the AMO (for AO case) (Table S1 and Fig. S8). For ENSO&IPO, the 475 

relatively short period from 1982 to 2013 includes an upward phase and a downward phase, 476 

resulting in a small trend (Fig. S1c). For AO (Fig. S1b), its small trend during 1982-2013 is 477 

correlated with AMO and thus is attributed to the latter, as explained in section 2.3. This results 478 

in a very small trend contribution from AO. In contrast, the increase of the AMO index after 479 

~1972 leads to a significant increasing trend for the AMO index during 1982-2013 (Fig. S1a and 480 
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Table S1). 481 

 482 

4. Summary and Discussion 483 

In this study, we have investigated the spatio-temporal variations of NDVIgs over the global 484 

(60
o
S-70

o
N) land during 1982-2013 using EOF decomposition, examined their relations to local 485 

climate factors and remote climate oscillations using correlation and MCA analyses, and 486 

estimated the contributions by external forcing and internal climate variations to observed 487 

NDVIgs trends using regression analyses. 488 

Results show a greening trend from 1982-2013 over Eurasia, eastern North America, 489 

southeastern Asia, northern South America, Sahel, and Australia, and browning over southern 490 

Africa, southern South America and northern North America (Fig.1c). Globally averaged, there 491 

was a significant upward trend in NDVIgs (~0.00474 units per decade) from 1982-2013, 492 

especially before 1997 (Fig.1d). The NDVI trend patterns shown here are consistent with those 493 

reported in previous studies (e.g., Xiao and Moody, 2005; De Jong et al., 2012; Ukkola et al., 494 

2015; Julien et al., 2006). The two pronounced declines of global NDVIgs around 1984 and 1993 495 

(Fig.1d) are likely caused by the cooling effect after two volcanic erruptions in 1982 and 1991 496 

(Lucht et al., 2002; Soden et al., 2002).  497 

As expected, NDVIgs is found to be temperature-limited over the high-latitude Northern 498 

Hemisphere, but water-limited in arid and semi-arid regions, and radiation-limited over the 499 

Amazon, eastern and southearn Asia, and parts of the middle-latitude Northern Hemisphere 500 

(Fig.2), which are in agreement with previous results (e.g., Nemani et al., 2003; Piao et al., 501 

2014). The MCA analysis shows that ENSO is the leading climate oscillation that affects 502 
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interannual variability of global vegetation growth (Fig.4), with warm ENSO&IPO events 503 

leading to vegetation decline over southern Africa, Australia, India, northern South America, 504 

northeastern and southern Asia, while the opposite occurs over North America, central Asia, 505 

eastern Africa and eastern China (Figs.3-4), which are in agreement with many previous studies 506 

(eg., Woodward et al., 2008; Miralles et al., 2014; Bothale and Katpatal, 2014). A North 507 

America-Eurasia dipole pattern in the NDVIgs-AO correlation (Fig.3b) is expected given the 508 

influence of AO to NH climate and greenness (Thompson and Wallace, 1998; Buermann et al., 509 

2003). Significant correlations between interannual to decadal variablity of NDVI and AMO are 510 

found over large land areas (Fig.3c), indicating that AMO is a global climate mode that shoud 511 

not be ignored and probably influence not only the Atlantic-surrounded areas but also areas 512 

away from the Atlantic, such as the western tropical Pacific (Sun et al., 2017). 513 

Based on the observational data and regression analysis, our study attributes about two 514 

thirds (~66%) of the global growing-season NDVI trend to the external anthropogenic forcing 515 

during 1982-2013, while the internal climate variations account for the rest (~34%) (Fig.5). Our 516 

attribution results are consistent with the modelling study of Mao et al. (2016), who showed that 517 

the external anthropogenic forcings (mainly GHGs) contribute the most to the greening trends 518 

over northern extratropical land. However, there are differences in the estimated contributions 519 

between this study and other previous modelling studies (e.g., Los, 2013; Mao et al., 2013; Zhu 520 

et al., 2016), which have attributed the global greening trends to CO2 fertilization, climate 521 

change, nitrogen depostion, and other factors. The possible explanation is that these previous 522 

studies separated the CO2 fertilization effect from its climatic effect while in our study they are 523 

combined together, including the impact of other GHGs and manmade aerosols besides CO2. 524 
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Furthermore, due to modeling uncertainties and different attribution analysis methods, there are 525 

large discrepancies among the previous results. For example, CO2 fertilization is considered as 526 

the dominant driving factor by Mao et al. (2013), and it accounts for 40% of the greening trend 527 

in Los (2013) and 70% in Zhu et al. (2016); while climate change accouts for 40% in Los (2013) 528 

and 8% in Zhu et al. (2016). In addition, there are interactions among climate change, CO2 529 

fertilization and nitrogen deposition (Piao et al., 2015), which are not fully taken into account in 530 

ecosystem modeling.  531 

Here, we further quantified the relative contribution from internal climate variablity in 532 

addition to the contribution by the anthropogenic forcing, and we tried to further separate the 533 

contribution from internal climate variability into three climae modes (ENSO&IPO, AMO, and 534 

AO). It is suggested that AMO contributes the most to the NDVIgs trend among the three climate 535 

modes examined here (Fig.6). This is due to the relatively large trend in the AMO index but 536 

small trends in the other two indices after removing the component associated with the 537 

long-term anthropogenic forcing series (Table S1). The global widespread influence of AMO on 538 

vegetation (Fig.3c) is another possible explanation. The spatial patterns of the AMO-induced 539 

NDVIgs trends are expected given the NDVIgs-AMO correlation (Fig.3c), NDVIgs-T and 540 

NDVIgs-P relationship (Fig.2a-b), and the reported climate impacts of AMO (eg., Knight et al., 541 

2006). This result emphasizes the important role of AMO on vegetaiton over globe (Bastos et al., 542 

2017). 543 

Overall, our study suggests that the interannual variablity of global NDVI in recent decades 544 

is dominated by variations induced by ENSO, and the global greening trends are primarily 545 

attributable to external anthropogenic forcing (~66%, mainly GHGs), with the rest explained by 546 
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internal climate modes (mainly AMO). Although our attribution results likely depend on the 547 

regression method used in our analysis, they are derived from an approach different from 548 

previous modeling studies, which can provide an estimate independent of the modeling studies. 549 
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